AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
With the continuous evolution of computational devices, more and more applications are being executed remotely. The applications operate on a wide spectrum of devices, ranging from IoT nodes with low computational capabilities to large cloud providers with high capabilities. Remote execution often deals with sensitive data or executes proprietary software. Hence, the challenge of ensuring that the code execution will not be compromised rises. Remote Attestation deals with this challenge. It ensures the code is executed in a non-compromised environment by calculating a potentially large sequence of cryptographic hash values. Each hash calculation is computationally intensive and over a large sequence the overhead becomes extremely high. In this work, we propose LightFAt: a Lightweight Control Flow Attestation scheme. Instead of relying on the expensive cryptographic hash calculation, LightFAt leverages the readings from the processor’s Performance Monitor Unit (PMU) in conjunction with a lightweight unsupervised machine learning (ML) classifier to detect whether a target application’s control flow is compromised, hence improving the system’s security. On the verifier’s side, LightFAt reaches a detection accuracy of over 95