AIにより推定されたラベル
モデルの頑健性保証 敵対的サンプルの検知 ロバスト性向上手法
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
The Madry Lab recently hosted a competition designed to test the robustness of their adversarially trained MNIST model. Attacks were constrained to perturb each pixel of the input image by a scaled maximal L∞ distortion ϵ = 0.3. This discourages the use of attacks which are not optimized on the L∞ distortion metric. Our experimental results demonstrate that by relaxing the L∞ constraint of the competition, the elastic-net attack to deep neural networks (EAD) can generate transferable adversarial examples which, despite their high average L∞ distortion, have minimal visual distortion. These results call into question the use of L∞ as a sole measure for visual distortion, and further demonstrate the power of EAD at generating robust adversarial examples.