AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Performance-critical machine learning models should be robust to input perturbations not seen during training. Adversarial training is a method for improving a model’s robustness to some perturbations by including them in the training process, but this tends to exacerbate other vulnerabilities of the model. The adversarial training framework has the effect of translating the data with respect to the cost function, while weight decay has a scaling effect. Although weight decay could be considered a crude regularization technique, it appears superior to adversarial training as it remains stable over a broader range of regimes and reduces all generalization errors. Equipped with these abstractions, we provide key baseline results and methodology for characterizing robustness. The two approaches can be combined to yield one small model that demonstrates good robustness to several white-box attacks associated with different metrics.