Labels Predicted by AI
敵対的サンプルの脆弱性 研究方法論 ロバスト性とプライバシーの関係
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
This paper aims to provide a thorough study on the effectiveness of the transformation-based ensemble defence for image classification and its reasons. It has been empirically shown that they can enhance the robustness against evasion attacks, while there is little analysis on the reasons. In particular, it is not clear whether the robustness improvement is a result of transformation or ensemble. In this paper, we design two adaptive attacks to better evaluate the transformation-based ensemble defence. We conduct experiments to show that 1) the transferability of adversarial examples exists among the models trained on data records after different reversible transformations; 2) the robustness gained through transformation-based ensemble is limited; 3) this limited robustness is mainly from the irreversible transformations rather than the ensemble of a number of models; and 4) blindly increasing the number of sub-models in a transformation-based ensemble does not bring extra robustness gain.