What Does Normal Even Mean? Evaluating Benign Traffic in Intrusion Detection Datasets

Labels Predicted by AI
Abstract

Supervised machine learning techniques rely on labeled data to achieve high task performance, but this requires the labels to capture some meaningful differences in the underlying data structure. For training network intrusion detection algorithms, most datasets contain a series of attack classes and a single large benign class which captures all non-attack network traffic. A review of intrusion detection papers and guides that explicitly state their data preprocessing steps identified that the majority took the labeled categories of the dataset at face value when training their algorithms. The present paper evaluates the structure of benign traffic in several common intrusion detection datasets (NSL-KDD, UNSW-NB15, and CIC-IDS 2017) and determines whether there are meaningful sub-categories within this traffic which may improve overall multi-classification performance using common machine learning techniques. We present an overview of some unsupervised clustering techniques (e.g., HDBSCAN, Mean Shift Clustering) and show how they differentially cluster the benign traffic space.

Copied title and URL