Labels Predicted by AI
RAG Traffic Simulation Watermark
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Technological advancements have revolutionized numerous industries, including transportation. While digitalization, automation, and connectivity have enhanced safety and efficiency, they have also introduced new vulnerabilities. With 95 awareness in transportation is increasingly critical. Despite numerous cyberattacks on transportation systems worldwide, comprehensive and centralized records of these incidents remain scarce. To address this gap and enhance cyber awareness, this paper presents a large language model (LLM) based approach to extract and organize transportation related cyber incidents from publicly available datasets. A key contribution of this work is the use of generative AI to transform unstructured, heterogeneous cyber incident data into structured formats. Incidents were sourced from the Center for Strategic & International Studies (CSIS) List of Significant Cyber Incidents, the University of Maryland Cyber Events Database (UMCED), the European Repository of Cyber Incidents (EuRepoC), the Maritime Cyber Attack Database (MCAD), and the U.S. DOT Transportation Cybersecurity and Resiliency (TraCR) Examples of Cyber Attacks in Transportation (2018 to 2022). These were classified by a fine tuned LLM into five transportation modes: aviation, maritime, rail, road, and multimodal, forming a transportation specific cyber incident database. Another key contribution of this work is the development of a Retrieval Augmented Generation question answering system, designed to enhance accessibility and practical use by enabling users to query the curated database for specific details on transportation related cyber incidents. By leveraging LLMs for both data extraction and user interaction, this study contributes a novel, accessible tool for improving cybersecurity awareness in the transportation sector.