Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Machine learning models are vulnerable to adversarial examples: minor perturbations to input samples intended to deliberately cause misclassification. While an obvious security threat, adversarial examples yield as well insights about the applied model itself. We investigate adversarial examples in the context of Bayesian neural network’s (BNN’s) uncertainty measures. As these measures are highly non-smooth, we use a smooth Gaussian process classifier (GPC) as substitute. We show that both confidence and uncertainty can be unsuspicious even if the output is wrong. Intriguingly, we find subtle differences in the features influencing uncertainty and confidence for most tasks.