SLSGD: Secure and Efficient Distributed On-device Machine Learning

Labels Predicted by AI
Abstract

We consider distributed on-device learning with limited communication and security requirements. We propose a new robust distributed optimization algorithm with efficient communication and attack tolerance. The proposed algorithm has provable convergence and robustness under non-IID settings. Empirical results show that the proposed algorithm stabilizes the convergence and tolerates data poisoning on a small number of workers.

Copied title and URL