Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Adversarially robust machine learning has received much recent attention. However, prior attacks and defenses for non-parametric classifiers have been developed in an ad-hoc or classifier-specific basis. In this work, we take a holistic look at adversarial examples for non-parametric classifiers, including nearest neighbors, decision trees, and random forests. We provide a general defense method, adversarial pruning, that works by preprocessing the dataset to become well-separated. To test our defense, we provide a novel attack that applies to a wide range of non-parametric classifiers. Theoretically, we derive an optimally robust classifier, which is analogous to the Bayes Optimal. We show that adversarial pruning can be viewed as a finite sample approximation to this optimal classifier. We empirically show that our defense and attack are either better than or competitive with prior work on non-parametric classifiers. Overall, our results provide a strong and broadly-applicable baseline for future work on robust non-parametrics. Code available at https://github.com/yangarbiter/adversarial-nonparametrics/ .