Reasoning-Style Poisoning of LLM Agents via Stealthy Style Transfer: Process-Level Attacks and Runtime Monitoring in RSV Space

Labels Predicted by AI
Abstract

Large Language Model (LLM) agents relying on external retrieval are increasingly deployed in high-stakes environments. While existing adversarial attacks primarily focus on content falsification or instruction injection, we identify a novel, process-oriented attack surface: the agent’s reasoning style. We propose Reasoning-Style Poisoning (RSP), a paradigm that manipulates how agents process information rather than what they process. We introduce Generative Style Injection (GSI), an attack method that rewrites retrieved documents into pathological tones–specifically “analysis paralysis” or “cognitive haste”–without altering underlying facts or using explicit triggers. To quantify these shifts, we develop the Reasoning Style Vector (RSV), a metric tracking Verification depth, Self-confidence, and Attention focus. Experiments on HotpotQA and FEVER using ReAct, Reflection, and Tree of Thoughts (ToT) architectures reveal that GSI significantly degrades performance. It increases reasoning steps by up to 4.4 times or induces premature errors, successfully bypassing state-of-the-art content filters. Finally, we propose RSP-M, a lightweight runtime monitor that calculates RSV metrics in real-time and triggers alerts when values exceed safety thresholds. Our work demonstrates that reasoning style is a distinct, exploitable vulnerability, necessitating process-level defenses beyond static content analysis.

Copied title and URL