Labels Predicted by AI
Attack Action Model Data Generation
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Using automated reasoning, code synthesis, and contextual decision-making, we introduce a new threat that exploits large language models (LLMs) to autonomously plan, adapt, and execute the ransomware attack lifecycle. Ransomware 3.0 represents the first threat model and research prototype of LLM-orchestrated ransomware. Unlike conventional malware, the prototype only requires natural language prompts embedded in the binary; malicious code is synthesized dynamically by the LLM at runtime, yielding polymorphic variants that adapt to the execution environment. The system performs reconnaissance, payload generation, and personalized extortion, in a closed-loop attack campaign without human involvement. We evaluate this threat across personal, enterprise, and embedded environments using a phase-centric methodology that measures quantitative fidelity and qualitative coherence in each attack phase. We show that open source LLMs can generate functional ransomware components and sustain closed-loop execution across diverse environments. Finally, we present behavioral signals and multi-level telemetry of Ransomware 3.0 through a case study to motivate future development of better defenses and policy enforcements to address novel AI-enabled ransomware attacks.