Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The ability to identify applications based on the network data they generate could be a valuable tool for cyber defense. We report on a machine learning technique capable of using netflow-like features to predict the application that generated the traffic. In our experiments, we used ground-truth labels obtained from host-based sensors deployed in a large enterprise environment; we applied random forests and multilayer perceptrons to the tasks of browser vs. non-browser identification, browser fingerprinting, and process name prediction. For each of these tasks, we demonstrate how machine learning models can achieve high classification accuracy using only netflow-like features as the basis for classification.