Labels Predicted by AI
Indirect Prompt Injection Adversarial attack Performance Evaluation
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Navigation agents powered by large language models (LLMs) convert natural language instructions into executable plans and actions. Compared to text-based applications, their security is far more critical: a successful prompt injection attack does not just alter outputs but can directly misguide physical navigation, leading to unsafe routes, mission failure, or real-world harm. Despite this high-stakes setting, the vulnerability of navigation agents to prompt injection remains largely unexplored. In this paper, we propose PINA, an adaptive prompt optimization framework tailored to navigation agents under black-box, long-context, and action-executable constraints. Experiments on indoor and outdoor navigation agents show that PINA achieves high attack success rates with an average ASR of 87.5
