PAL*M: Property Attestation for Large Generative Models

Labels Predicted by AI
Abstract

Machine learning property attestations allow provers (e.g., model providers or owners) to attest properties of their models/datasets to verifiers (e.g., regulators, customers), enabling accountability towards regulations and policies. But, current approaches do not support generative models or large datasets. We present PAL*M, a property attestation framework for large generative models, illustrated using large language models. PAL*M defines properties across training and inference, leverages confidential virtual machines with security-aware GPUs for coverage of CPU-GPU operations, and proposes using incremental multiset hashing over memory-mapped datasets to efficiently track their integrity. We implement PAL*M on Intel TDX and NVIDIA H100, showing it is efficient, scalable, versatile, and secure.

Copied title and URL