Labels Predicted by AI
RAG Security Assurance Framework
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Machine learning property attestations allow provers (e.g., model providers or owners) to attest properties of their models/datasets to verifiers (e.g., regulators, customers), enabling accountability towards regulations and policies. But, current approaches do not support generative models or large datasets. We present PAL*M, a property attestation framework for large generative models, illustrated using large language models. PAL*M defines properties across training and inference, leverages confidential virtual machines with security-aware GPUs for coverage of CPU-GPU operations, and proposes using incremental multiset hashing over memory-mapped datasets to efficiently track their integrity. We implement PAL*M on Intel TDX and NVIDIA H100, showing it is efficient, scalable, versatile, and secure.
