Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
KNX is one popular communication protocol for a building automation system (BAS). However, its lack of security makes it subject to a variety of attacks. We are the first to study the false data injection attack against a KNX based BAS. We design a man-in-the-middle (MITM) attack to change the data from a temperature sensor and inject false data into the BAS. We model a BAS and analyze the impact of the false data injection attack on the system in terms of energy cost. Since the MITM attack may disturb the KNX traffic, we design a machine learning (ML) based detection strategy to detect the false data injection attack using a novel feature based on the Jensen Shannon Divergence (JSD), which measures the similarity of KNX telegram inter-arrival time distributions with attack and with no attack. We perform real-world experiments and validate the presented false data injection attack and the ML based detection strategy. We also simulate a BAS, and show that the false data injection attack has a huge impact on the BAS in terms of power consumption.