Labels Predicted by AI
Privacy Protection Prompt Injection
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
This work addresses the computational challenge of enforcing privacy for agentic Large Language Models (LLMs), where privacy is governed by the contextual integrity framework. Indeed, existing defenses rely on LLM-mediated checking stages that add substantial latency and cost, and that can be undermined in multi-turn interactions through manipulation or benign-looking conversational scaffolding. Contrasting this background, this paper makes a key observation: internal representations associated with privacy-violating intent can be separated from benign requests using linear structure. Using this insight, the paper proposes NeuroFilter, a guardrail framework that operationalizes contextual integrity by mapping norm violations to simple directions in the model’s activation space, enabling detection even when semantic filters are bypassed. The proposed filter is also extended to capture threats arising during long conversations using the concept of activation velocity, which measures cumulative drift in internal representations across turns. A comprehensive evaluation across over 150,000 interactions and covering models from 7B to 70B parameters, illustrates the strong performance of NeuroFilter in detecting privacy attacks while maintaining zero false positives on benign prompts, all while reducing the computational inference cost by several orders of magnitude when compared to LLM-based agentic privacy defenses.
