Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Website Fingerprinting (WF) is a type of traffic analysis attack that enables a local passive eavesdropper to infer the victim’s activity, even when the traffic is protected by a VPN or an anonymity system like Tor. Leveraging a deep-learning classifier, a WF attacker can gain over 98 traffic. In this paper, we explore a novel defense, Mockingbird, based on the idea of adversarial examples that have been shown to undermine machine-learning classifiers in other domains. Since the attacker gets to design and train his attack classifier based on the defense, we first demonstrate that at a straightforward technique for generating adversarial-example based traces fails to protect against an attacker using adversarial training for robust classification. We then propose Mockingbird, a technique for generating traces that resists adversarial training by moving randomly in the space of viable traces and not following more predictable gradients. The technique drops the accuracy of the state-of-the-art attack hardened with adversarial training from 98 is generally lower than state-of-the-art defenses, and much lower when considering Top-2 accuracy, while incurring lower bandwidth overheads.