Labels Predicted by AI
Privacy Protection Method DNN IP Protection Method LLM Performance Evaluation
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The community explored to build private inference frameworks for transformer-based large language models (LLMs) in a server-client setting, where the server holds the model parameters and the client inputs its private data (or prompt) for inference. However, these frameworks impose significant overhead when the private inputs are forward propagated through the original LLMs. In this paper, we show that substituting the computation- and communication-heavy operators in the transformer architecture with privacy-computing friendly approximations can greatly reduce the private inference costs while incurring very minor impact on model performance. Compared to state-of-the-art Iron (NeurIPS 2022), our privacy-computing friendly model inference pipeline achieves a 5× acceleration in computation and an 80 nearly identical accuracy.