Labels Predicted by AI
Prompt Injection Static Analysis Vulnerability Assessment Method
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
This report examines the synergy between Large Language Models (LLMs) and Static Application Security Testing (SAST) to improve vulnerability discovery. Traditional SAST tools, while effective for proactive security, are limited by high false-positive rates and a lack of contextual understanding. Conversely, LLMs excel at code analysis and pattern recognition but can be prone to inconsistencies and hallucinations. By integrating these two technologies, a more intelligent and efficient system is created. This combination moves beyond mere vulnerability detection optimization, transforming security into a deeply integrated, contextual process that provides tangible benefits like improved triage, dynamic bug descriptions, bug validation via exploit generation and enhanced analysis of complex codebases. The result is a more effective security approach that leverages the strengths of both technologies while mitigating their weaknesses. SAST-Genius reduced false positives by about 91 compared to Semgrep alone.