Labels Predicted by AI
Backdoor Attack Poisoning Attack LLM Security
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The advent of Large Language Models (LLMs) has marked significant achievements in language processing and reasoning capabilities. Despite their advancements, LLMs face vulnerabilities to data poisoning attacks, where the adversary inserts backdoor triggers into training data to manipulate outputs. This work further identifies additional security risks in LLMs by designing a new data poisoning attack tailored to exploit the supervised fine-tuning (SFT) process. We propose a novel gradient-guided backdoor trigger learning (GBTL) algorithm to identify adversarial triggers efficiently, ensuring an evasion of detection by conventional defenses while maintaining content integrity. Through experimental validation across various language model tasks, including sentiment analysis, domain generation, and question answering, our poisoning strategy demonstrates a high success rate in compromising various LLMs’ outputs. We further propose two defense strategies against data poisoning attacks, including in-context learning (ICL) and continuous learning (CL), which effectively rectify the behavior of LLMs and significantly reduce the decline in performance. Our work highlights the significant security risks present during SFT of LLMs and the necessity of safeguarding LLMs against data poisoning attacks.