KubeGuard: LLM-Assisted Kubernetes Hardening via Configuration Files and Runtime Logs Analysis

Labels Predicted by AI
Abstract

The widespread adoption of Kubernetes (K8s) for orchestrating cloud-native applications has introduced significant security challenges, such as misconfigured resources and overly permissive configurations. Failing to address these issues can result in unauthorized access, privilege escalation, and lateral movement within clusters. Most existing K8s security solutions focus on detecting misconfigurations, typically through static analysis or anomaly detection. In contrast, this paper presents KubeGuard, a novel runtime log-driven recommender framework aimed at mitigating risks by addressing overly permissive configurations. KubeGuard is designed to harden K8s environments through two complementary tasks: Resource Creation and Resource Refinement. It leverages large language models (LLMs) to analyze manifests and runtime logs reflecting actual system behavior, using modular prompt-chaining workflows. This approach enables KubeGuard to create least-privilege configurations for new resources and refine existing manifests to reduce the attack surface. KubeGuard’s output manifests are presented as recommendations that users (e.g., developers and operators) can review and adopt to enhance cluster security. Our evaluation demonstrates that KubeGuard effectively generates and refines K8s manifests for Roles, NetworkPolicies, and Deployments, leveraging both proprietary and open-source LLMs. The high precision, recall, and F1-scores affirm KubeGuard’s practicality as a framework that translates runtime observability into actionable, least-privilege configuration guidance.

Copied title and URL