Labels Predicted by AI
Prompt Injection Adversarial Attack Detection Large Language Model
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Jailbreak attacks pose significant threats to large language models (LLMs), enabling attackers to bypass safeguards. However, existing reactive defense approaches struggle to keep up with the rapidly evolving multi-turn jailbreaks, where attackers continuously deepen their attacks to exploit vulnerabilities. To address this critical challenge, we propose HoneyTrap, a novel deceptive LLM defense framework leveraging collaborative defenders to counter jailbreak attacks. It integrates four defensive agents, Threat Interceptor, Misdirection Controller, Forensic Tracker, and System Harmonizer, each performing a specialized security role and collaborating to complete a deceptive defense. To ensure a comprehensive evaluation, we introduce MTJ-Pro, a challenging multi-turn progressive jailbreak dataset that combines seven advanced jailbreak strategies designed to gradually deepen attack strategies across multi-turn attacks. Besides, we present two novel metrics: Mislead Success Rate (MSR) and Attack Resource Consumption (ARC), which provide more nuanced assessments of deceptive defense beyond conventional measures. Experimental results on GPT-4, GPT-3.5-turbo, Gemini-1.5-pro, and LLaMa-3.1 demonstrate that HoneyTrap achieves an average reduction of 68.77
