Labels Predicted by AI
Data-Driven Vulnerability Assessment
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The emergence of large-scale quantum computing threatens widely deployed public-key cryptographic systems, creating an urgent need for enterprise-level methods to assess post-quantum (PQ) readiness. While PQ standards are under development, organizations lack scalable and quantitative frameworks for measuring cryptographic exposure and prioritizing migration across complex infrastructures. This paper presents a knowledge graph based framework that models enterprise cryptographic assets, dependencies, and vulnerabilities to compute a unified PQ readiness score. Infrastructure components, cryptographic primitives, certificates, and services are represented as a heterogeneous graph, enabling explicit modeling of dependency-driven risk propagation. PQ exposure is quantified using graph-theoretic risk functionals and attributed across cryptographic domains via Shapley value decomposition. To support scalability and data quality, the framework integrates large language models with human-in-the-loop validation for asset classification and risk attribution. The resulting approach produces explainable, normalized readiness metrics that support continuous monitoring, comparative analysis, and remediation prioritization.
