Labels Predicted by AI
XAI (Explainable AI) Interpretability Model evaluation methods
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
In principle, explanations are intended as a way to increase trust in machine learning models and are often obligated by regulations. However, many circumstances where these are demanded are adversarial in nature, meaning the involved parties have misaligned interests and are incentivized to manipulate explanations for their purpose. As a result, explainability methods fail to be operational in such settings despite the demand . In this paper, we take a step towards operationalizing explanations in adversarial scenarios with Zero-Knowledge Proofs (ZKPs), a cryptographic primitive. Specifically we explore ZKP-amenable versions of the popular explainability algorithm LIME and evaluate their performance on Neural Networks and Random Forests. Our code is publicly available at https://github.com/emlaufer/ExpProof.