Labels Predicted by AI
Prompt Injection Human Rights and Technology
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
As the capabilities of large language models continue to advance, so does their potential for misuse. While closed-source models typically rely on external defenses, open-weight models must primarily depend on internal safeguards to mitigate harmful behavior. Prior red-teaming research has largely focused on input-based jailbreaking and parameter-level manipulations. However, open-weight models also natively support prefilling, which allows an attacker to predefine initial response tokens before generation begins. Despite its potential, this attack vector has received little systematic attention. We present the largest empirical study to date of prefill attacks, evaluating over 20 existing and novel strategies across multiple model families and state-of-the-art open-weight models. Our results show that prefill attacks are consistently effective against all major contemporary open-weight models, revealing a critical and previously underexplored vulnerability with significant implications for deployment. While certain large reasoning models exhibit some robustness against generic prefilling, they remain vulnerable to tailored, model-specific strategies. Our findings underscore the urgent need for model developers to prioritize defenses against prefill attacks in open-weight LLMs.
