Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The success of Large Language Models (LLMs) has led to a parallel rise in the development of Large Multimodal Models (LMMs), which have begun to transform a variety of applications. These sophisticated multimodal models are designed to interpret and analyze complex data by integrating multiple modalities such as text and images, thereby opening new avenues for a range of applications. This paper investigates the applicability and effectiveness of prompt-engineered LMMs that process both images and text, including models such as LLaVA, BakLLaVA, Moondream, Gemini-pro-vision, and GPT-4o, compared to fine-tuned Vision Transformer (ViT) models in addressing critical security challenges. We focus on two distinct security tasks: 1) a visually evident task of detecting simple triggers, such as small pixel variations in images that could be exploited to access potential backdoors in the models, and 2) a visually non-evident task of malware classification through visual representations. In the visually evident task, some LMMs, such as Gemini-pro-vision and GPT-4o, have demonstrated the potential to achieve good performance with careful prompt engineering, with GPT-4o achieving the highest accuracy and F1-score of 91.9% and 91%, respectively. However, the fine-tuned ViT models exhibit perfect performance in this task due to its simplicity. For the visually non-evident task, the results highlight a significant divergence in performance, with ViT models achieving F1-scores of 97.11% in predicting 25 malware classes and 97.61% in predicting 5 malware families, whereas LMMs showed suboptimal performance despite iterative prompt improvements. This study not only showcases the strengths and limitations of prompt-engineered LMMs in cybersecurity applications but also emphasizes the unmatched efficacy of fine-tuned ViT models for precise and dependable tasks.