Enterprise AI Must Enforce Participant-Aware Access Control

Labels Predicted by AI
Abstract

Large language models (LLMs) are increasingly deployed in enterprise settings where they interact with multiple users and are trained or fine-tuned on sensitive internal data. While fine-tuning enhances performance by internalizing domain knowledge, it also introduces a critical security risk: leakage of confidential training data to unauthorized users. These risks are exacerbated when LLMs are combined with Retrieval-Augmented Generation (RAG) pipelines that dynamically fetch contextual documents at inference time. We demonstrate data exfiltration attacks on AI assistants where adversaries can exploit current fine-tuning and RAG architectures to leak sensitive information by leveraging the lack of access control enforcement. We show that existing defenses, including prompt sanitization, output filtering, system isolation, and training-level privacy mechanisms, are fundamentally probabilistic and fail to offer robust protection against such attacks. We take the position that only a deterministic and rigorous enforcement of fine-grained access control during both fine-tuning and RAG-based inference can reliably prevent the leakage of sensitive data to unauthorized recipients. We introduce a framework centered on the principle that any content used in training, retrieval, or generation by an LLM is explicitly authorized for all users involved in the interaction. Our approach offers a simple yet powerful paradigm shift for building secure multi-user LLM systems that are grounded in classical access control but adapted to the unique challenges of modern AI workflows. Our solution has been deployed in Microsoft Copilot Tuning, a product offering that enables organizations to fine-tune models using their own enterprise-specific data.

Copied title and URL