Labels Predicted by AI
Vulnerability Attack Method Model Robustness
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Large Language Models (LLMs) are increasingly used in agentic systems, where their interactions with diverse tools and environments create complex, multi-stage safety challenges. However, existing benchmarks mostly rely on static, single-turn assessments that miss vulnerabilities from adaptive, long-chain attacks. To fill this gap, we introduce DREAM, a framework for systematic evaluation of LLM agents against dynamic, multi-stage attacks. At its core, DREAM uses a Cross-Environment Adversarial Knowledge Graph (CE-AKG) to maintain stateful, cross-domain understanding of vulnerabilities. This graph guides a Contextualized Guided Policy Search (C-GPS) algorithm that dynamically constructs attack chains from a knowledge base of 1,986 atomic actions across 349 distinct digital environments. Our evaluation of 12 leading LLM agents reveals a critical vulnerability: these attack chains succeed in over 70
