Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Federated learning (FL) has emerged as a prevalent distributed machine learning scheme that enables collaborative model training without aggregating raw data. Cloud service providers further embrace Federated Learning as a Service (FLaaS), allowing data analysts to execute their FL training pipelines over differentially-protected data. Due to the intrinsic properties of differential privacy, the enforced privacy level on data blocks can be viewed as a privacy budget that requires careful scheduling to cater to diverse training pipelines. Existing privacy budget scheduling studies prioritize either efficiency or fairness individually. In this paper, we propose DPBalance, a novel privacy budget scheduling mechanism that jointly optimizes both efficiency and fairness. We first develop a comprehensive utility function incorporating data analyst-level dominant shares and FL-specific performance metrics. A sequential allocation mechanism is then designed using the Lagrange multiplier method and effective greedy heuristics. We theoretically prove that DPBalance satisfies Pareto Efficiency, Sharing Incentive, Envy-Freeness, and Weak Strategy Proofness. We also theoretically prove the existence of a fairness-efficiency tradeoff in privacy budgeting. Extensive experiments demonstrate that DPBalance outperforms state-of-the-art solutions, achieving an average efficiency improvement of 1.44 × ∼ 3.49×, and an average fairness improvement of 1.37 × ∼ 24.32×.