Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
We propose a new approach to traffic preprocessing called Differentiation of Sliding Rescaled Ranges (DSRR) expanding the ideas laid down by H.E. Hurst. We apply proposed approach on the characterizing encrypted and unencrypted traffic on the well-known ISCXVPN2016 dataset. We deploy DSRR for flow-base features and then solve the task VPN vs nonVPN with basic machine learning models. With DSRR and Random Forest, we obtain 0.971 Precision, 0.969 Recall and improve this result to 0.976 using statistical analysis of features in comparison with Neural Network approach that gives 0.93 Precision via 2D-CNN. The proposed method and the results can be found at https://github.com/AleksandrIvchenko/dsrr_vpn_nonvpn.