Labels Predicted by AI
公平性のあるAIモデルの作成 深層学習手法 AIによる出力のバイアスの検出
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
In comparison to the numerous debiasing methods proposed for the static non-contextualised word embeddings, the discriminative biases in contextualised embeddings have received relatively little attention. We propose a fine-tuning method that can be applied at token- or sentence-levels to debias pre-trained contextualised embeddings. Our proposed method can be applied to any pre-trained contextualised embedding model, without requiring to retrain those models. Using gender bias as an illustrative example, we then conduct a systematic study using several state-of-the-art (SoTA) contextualised representations on multiple benchmark datasets to evaluate the level of biases encoded in different contextualised embeddings before and after debiasing using the proposed method. We find that applying token-level debiasing for all tokens and across all layers of a contextualised embedding model produces the best performance. Interestingly, we observe that there is a trade-off between creating an accurate vs. unbiased contextualised embedding model, and different contextualised embedding models respond differently to this trade-off.