Labels Predicted by AI
Vulnerability Analysis Poisoning attack on RAG Interpretability
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Intrusion Detection and Prevention Systems (IDS/IPS) in large enterprises can generate hundreds of thousands of alerts per hour, overwhelming security analysts with logs that demand deep, rapidly evolving domain expertise. Conventional machine-learning detectors trim the alert volume but still yield high false-positive rates, while standard single-pass Retrieval-Augmented Generation (RAG) pipelines often retrieve irrelevant context and fail to justify their predictions. To overcome these shortcomings, we present CyberRAG, a modular, agent-based RAG framework that delivers real-time classification, explanation, and structured reporting for cyber-attacks. A central LLM agent orchestrates (i) a pool of fine-tuned specialized classifiers, each tailored to a distinct attack family; (ii) tool adapters for enrichment and alerting; and (iii) an iterative retrieval-and-reason loop that continuously queries a domain-specific knowledge base until the evidence is both relevant and self-consistent. Unlike traditional RAG systems, CyberRAG embraces an agentic design that enables dynamic control flow and adaptive reasoning. This agent-centric architecture refines its threat labels and natural-language justifications autonomously, reducing false positives and enhancing interpretability. The framework is fully extensible: new attack types can be supported by simply adding a classifier without retraining the core agent. CyberRAG has been evaluated achieving over 94 final classification accuracy to 94.92 Generated explanations score up to 0.94 in BERTScore and 4.9/5 in GPT-4-based expert evaluation. These results show that agentic, specialist-oriented RAG can pair high detection accuracy with trustworthy, SOC-ready prose, offering a practical and scalable path toward semi-autonomous cyber-defence workflows.