Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Recently, deep learning has been applied to many security-sensitive applications, such as facial authentication. The existence of adversarial examples hinders such applications. The state-of-the-art result on defense shows that adversarial training can be applied to train a robust model on MNIST against adversarial examples; but it fails to achieve a high empirical worst-case accuracy on a more complex task, such as CIFAR-10 and SVHN. In our work, we propose curriculum adversarial training (CAT) to resolve this issue. The basic idea is to develop a curriculum of adversarial examples generated by attacks with a wide range of strengths. With two techniques to mitigate the forgetting and the generalization issues, we demonstrate that CAT can improve the prior art’s empirical worst-case accuracy by a large margin of 25 CIFAR-10 and 35 non-adversarial inputs is comparable to the state-of-the-art models.