Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Prior Membership Inference Attacks (MIAs) on pre-trained Large Language Models (LLMs), adapted from classification model attacks, fail due to ignoring the generative process of LLMs across token sequences. In this paper, we present a novel attack that adapts MIA statistical tests to the perplexity dynamics of subsequences within a data point. Our method significantly outperforms prior loss-based approaches, revealing context-dependent memorization patterns in pre-trained LLMs.