ConfGuard: A Simple and Effective Backdoor Detection for Large Language Models

Labels Predicted by AI
Abstract

Backdoor attacks pose a significant threat to Large Language Models (LLMs), where adversaries can embed hidden triggers to manipulate LLM’s outputs. Most existing defense methods, primarily designed for classification tasks, are ineffective against the autoregressive nature and vast output space of LLMs, thereby suffering from poor performance and high latency. To address these limitations, we investigate the behavioral discrepancies between benign and backdoored LLMs in output space. We identify a critical phenomenon which we term sequence lock: a backdoored model generates the target sequence with abnormally high and consistent confidence compared to benign generation. Building on this insight, we propose ConfGuard, a lightweight and effective detection method that monitors a sliding window of token confidences to identify sequence lock. Extensive experiments demonstrate ConfGuard achieves a near 100% true positive rate (TPR) and a negligible false positive rate (FPR) in the vast majority of cases. Crucially, the ConfGuard enables real-time detection almost without additional latency, making it a practical backdoor defense for real-world LLM deployments.

Copied title and URL