Labels Predicted by AI
Feature Selection Method Machine Learning Algorithm Interpretability
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
High-dimensional malware datasets often exhibit feature redundancy, instability, and scalability limitations, which hinder the effectiveness and interpretability of machine learning-based malware detection systems. Although feature selection is commonly employed to mitigate these issues, many existing approaches lack robustness when applied to large-scale and heterogeneous malware data. To address this gap, this paper proposes CAFE-GB (Chunk-wise Aggregated Feature Estimation using Gradient Boosting), a scalable feature selection framework designed to produce stable and globally consistent feature rankings for high-dimensional malware detection. CAFE-GB partitions training data into overlapping chunks, estimates local feature importance using gradient boosting models, and aggregates these estimates to derive a robust global ranking. Feature budget selection is performed separately through a systematic k-selection and stability analysis to balance detection performance and robustness. The proposed framework is evaluated on two large-scale malware datasets: BODMAS and CIC-AndMal2020, representing large and diverse malware feature spaces. Experimental results show that classifiers trained on CAFE-GB -selected features achieve performance parity with full-feature baselines across multiple metrics, including Accuracy, F1-score, MCC, ROC-AUC, and PR-AUC, while reducing feature dimensionality by more than 95%. Paired Wilcoxon signed-rank tests confirm that this reduction does not introduce statistically significant performance degradation. Additional analyses demonstrate low inter-feature redundancy and improved interpretability through SHAP-based explanations. Runtime and memory profiling further indicate reduced downstream classification overhead. Overall, CAFE-GB provides a stable, interpretable, and scalable feature selection strategy for large-scale malware detection.
