Labels Predicted by AI
Prompt leaking Information Security Disabling Safety Mechanisms of LLM
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Large language models (LLMs) increasingly employ guardrails to enforce ethical, legal, and application-specific constraints on their outputs. While effective at mitigating harmful responses, these guardrails introduce a new class of vulnerabilities by exposing observable decision patterns. In this work, we present the first study of black-box LLM guardrail reverse-engineering attacks. We propose Guardrail Reverse-engineering Attack (GRA), a reinforcement learning-based framework that leverages genetic algorithm-driven data augmentation to approximate the decision-making policy of victim guardrails. By iteratively collecting input-output pairs, prioritizing divergence cases, and applying targeted mutations and crossovers, our method incrementally converges toward a high-fidelity surrogate of the victim guardrail. We evaluate GRA on three widely deployed commercial systems, namely ChatGPT, DeepSeek, and Qwen3, and demonstrate that it achieves an rule matching rate exceeding 0.92 while requiring less than $85 in API costs. These findings underscore the practical feasibility of guardrail extraction and highlight significant security risks for current LLM safety mechanisms. Our findings expose critical vulnerabilities in current guardrail designs and highlight the urgent need for more robust defense mechanisms in LLM deployment.
