Beyond Surface Alignment: Rebuilding LLMs Safety Mechanism via Probabilistically Ablating Refusal Direction

Labels Predicted by AI
Abstract

Jailbreak attacks pose persistent threats to large language models (LLMs). Current safety alignment methods have attempted to address these issues, but they experience two significant limitations: insufficient safety alignment depth and unrobust internal defense mechanisms. These limitations make them vulnerable to adversarial attacks such as prefilling and refusal direction manipulation. We introduce DeepRefusal, a robust safety alignment framework that overcomes these issues. DeepRefusal forces the model to dynamically rebuild its refusal mechanisms from jailbreak states. This is achieved by probabilistically ablating the refusal direction across layers and token depths during fine-tuning. Our method not only defends against prefilling and refusal direction attacks but also demonstrates strong resilience against other unseen jailbreak strategies. Extensive evaluations on four open-source LLM families and six representative attacks show that DeepRefusal reduces attack success rates by approximately 95 performance degradation.

Copied title and URL