Labels Predicted by AI
Prompt Injection Malicious Prompt Large Language Model
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Large Language Models (LLMs) have developed rapidly in web services, delivering unprecedented capabilities while amplifying societal risks. Existing works tend to focus on either isolated jailbreak attacks or static defenses, neglecting the dynamic interplay between evolving threats and safeguards in real-world web contexts. To mitigate these challenges, we propose ACE-Safety (Adversarial Co-Evolution for LLM Safety), a novel framework that jointly optimize attack and defense models by seamlessly integrating two key innovative procedures: (1) Group-aware Strategy-guided Monte Carlo Tree Search (GS-MCTS), which efficiently explores jailbreak strategies to uncover vulnerabilities and generate diverse adversarial samples; (2) Adversarial Curriculum Tree-aware Group Policy Optimization (AC-TGPO), which jointly trains attack and defense LLMs with challenging samples via curriculum reinforcement learning, enabling robust mutual improvement. Evaluations across multiple benchmarks demonstrate that our method outperforms existing attack and defense approaches, and provides a feasible pathway for developing LLMs that can sustainably support responsible AI ecosystems.
