Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Machine learning (ML) models can memorize training datasets. As a result, training ML models over private datasets can lead to the violation of individuals’ privacy. Differential privacy (DP) is a rigorous privacy notion to preserve the privacy of underlying training datasets. Yet, training ML models in a DP framework usually degrades the accuracy of ML models. This paper aims to boost the accuracy of a DP logistic regression (LR) via a pre-training module. In more detail, we initially pre-train our LR model on a public training dataset that there is no privacy concern about it. Then, we fine-tune our DP-LR model with the private dataset. In the numerical results, we show that adding a pre-training module significantly improves the accuracy of the DP-LR model.