A Protection against the Extraction of Neural Network Models

Labels Predicted by AI
Abstract

Given oracle access to a Neural Network (NN), it is possible to extract its underlying model. We here introduce a protection by adding parasitic layers which keep the underlying NN’s predictions mostly unchanged while complexifying the task of reverse-engineering. Our countermeasure relies on approximating a noisy identity mapping with a Convolutional NN. We explain why the introduction of new parasitic layers complexifies the attacks. We report experiments regarding the performance and the accuracy of the protected NN.

Copied title and URL