Labels Predicted by AI
Analysis of Detection Methods Large Language Model Evaluation Metrics
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Jailbreak prompts are a practical and evolving threat to large language models (LLMs), particularly in agentic systems that execute tools over untrusted content. Many attacks exploit long-context hiding, semantic camouflage, and lightweight obfuscations that can evade single-pass guardrails. We present RLM-JB, an end-to-end jailbreak detection framework built on Recursive Language Models (RLMs), in which a root model orchestrates a bounded analysis program that transforms the input, queries worker models over covered segments, and aggregates evidence into an auditable decision. RLM-JB treats detection as a procedure rather than a one-shot classification: it normalizes and de-obfuscates suspicious inputs, chunks text to reduce context dilution and guarantee coverage, performs parallel chunk screening, and composes cross-chunk signals to recover split-payload attacks. On AutoDAN-style adversarial inputs, RLM-JB achieves high detection effectiveness across three LLM backends (ASR/Recall 92.5-98.0
