Labels Predicted by AI
Edge Computing Federated Learning Experimental Validation
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
The proliferation of edge devices has created an urgent need for security solutions capable of detecting malware in real time while operating under strict computational and memory constraints. Recently, Large Language Models (LLMs) have demonstrated remarkable capabilities in recognizing complex patterns, yet their deployment on edge devices remains impractical due to their resource demands. However, in edge malware detection, static or centrally retrained models degrade under evolving threats and heterogeneous traffic; locally trained models become siloed and fail to transfer across domains. To overcome these limitations, in this paper, we present a continuous learning architecture for edge-based malware detection that combines local adaptation on each device with global knowledge sharing through parameter-efficient LoRA adapters. Lightweight transformer models (DistilBERT, DistilGPT-2, TinyT5) run on edge nodes and are incrementally fine-tuned on device-specific traffic; only the resulting LoRA modules are aggregated by a lightweight coordinator and redistributed, enabling cross-device generalization without exchanging raw data. We evaluate on two public IoT security datasets, Edge-IIoTset and TON-IoT, under multi-round learning to simulate evolving threats. Compared to isolated fine-tuning, the LoRA-based exchange yields up to 20-25
