Labels Predicted by AI
Privacy Assurance Disabling Safety Mechanisms of LLM Explanation Method
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Recent studies have shown that large language models (LLMs) can infer private user attributes (e.g., age, location, gender) from user-generated text shared online, enabling rapid and large-scale privacy breaches. Existing anonymization-based defenses are coarse-grained, lacking word-level precision in anonymizing privacy-leaking elements. Moreover, they are inherently limited as altering user text to hide sensitive cues still allows attribute inference to occur through models’ reasoning capabilities. To address these limitations, we propose a unified defense framework that combines fine-grained anonymization (TRACE) with inference-preventing optimization (RPS). TRACE leverages attention mechanisms and inference chain generation to identify and anonymize privacy-leaking textual elements, while RPS employs a lightweight two-stage optimization strategy to induce model rejection behaviors, thereby preventing attribute inference. Evaluations across diverse LLMs show that TRACE-RPS reduces attribute inference accuracy from around 50% to below 5% on open-source models. In addition, our approach offers strong cross-model generalization, prompt-variation robustness, and utility-privacy tradeoffs. Our code is available at https://github.com/Jasper-Yan/TRACE-RPS.
