Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Static Application Security Testing (SAST) tools are integral to modern DevSecOps pipelines, yet tools like CodeQL, Semgrep, and SonarQube remain fundamentally constrained: they require expert-crafted queries, generate excessive false positives, and detect only predefined vulnerability patterns. Recent work has explored augmenting SAST with Large Language Models (LLMs), but these approaches typically use LLMs to triage existing tool outputs rather than to reason about vulnerability semantics directly. We introduce QRS (Query, Review, Sanitize), a neuro-symbolic framework that inverts this paradigm. Rather than filtering results from static rules, QRS employs three autonomous agents that generate CodeQL queries from a structured schema definition and few-shot examples, then validate findings through semantic reasoning and automated exploit synthesis. This architecture enables QRS to discover vulnerability classes beyond predefined patterns while substantially reducing false positives. We evaluate QRS on full Python packages rather than isolated snippets. In 20 historical CVEs in popular PyPI libraries, QRS achieves 90.6
