Labels Predicted by AI
Indirect Prompt Injection Prompt Injection
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Large Language Models (LLMs) have enabled the development of powerful agentic systems capable of automating complex workflows across various fields. However, these systems are highly vulnerable to indirect prompt injection attacks, where malicious instructions embedded in external data can hijack agent behavior. In this work, we present ReasAlign, a model-level solution to improve safety alignment against indirect prompt injection attacks. The core idea of ReasAlign is to incorporate structured reasoning steps to analyze user queries, detect conflicting instructions, and preserve the continuity of the user’s intended tasks to defend against indirect injection attacks. To further ensure reasoning logic and accuracy, we introduce a test-time scaling mechanism with a preference-optimized judge model that scores reasoning steps and selects the best trajectory. Comprehensive evaluations across various benchmarks show that ReasAlign maintains utility comparable to an undefended model while consistently outperforming Meta SecAlign, the strongest prior guardrail. On the representative open-ended CyberSecEval2 benchmark, which includes multiple prompt-injected tasks, ReasAlign achieves 94.6
