Labels Predicted by AI
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Capture-the-Flag (CTF) competitions play a central role in modern cybersecurity as a platform for training practitioners and evaluating offensive and defensive techniques derived from real-world vulnerabilities. Despite recent advances in large language models (LLMs), existing LLM-based agents remain ineffective on high-difficulty cryptographic CTF challenges, which require precise cryptanalytic knowledge, stable long-horizon reasoning, and disciplined interaction with specialized toolchains. Through a systematic exploratory study, we show that insufficient knowledge granularity, rather than model reasoning capacity, is a primary factor limiting successful cryptographic exploitation: coarse or abstracted external knowledge often fails to support correct attack modeling and implementation. Motivated by this observation, we propose KryptoPilot, an open-world knowledge-augmented LLM agent for automated cryptographic exploitation. KryptoPilot integrates dynamic open-world knowledge acquisition via a Deep Research pipeline, a persistent workspace for structured knowledge reuse, and a governance subsystem that stabilizes reasoning through behavioral constraints and cost-aware model routing. This design enables precise knowledge alignment while maintaining efficient reasoning across heterogeneous subtasks. We evaluate KryptoPilot on two established CTF benchmarks and in six real-world CTF competitions. KryptoPilot achieves a complete solve rate on InterCode-CTF, solves between 56 and 60 percent of cryptographic challenges on the NYU-CTF benchmark, and successfully solves 26 out of 33 cryptographic challenges in live competitions, including multiple earliest-solved and uniquely-solved instances. These results demonstrate the necessity of open-world, fine-grained knowledge augmentation and governed reasoning for scaling LLM-based agents to real-world cryptographic exploitation.
