Labels Predicted by AI
Trigger Detection Backdoor Detection Backdoor Attack
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Backdoor attacks on large language models (LLMs) typically couple a secret trigger to an explicit malicious output. We show that this explicit association is unnecessary for common LLMs. We introduce a compliance-only backdoor: supervised fine-tuning on a mostly benign dataset in which a small subset of prompts is suffixed with an arbitrary single-word trigger and paired only with the response “Sure” with no harmful outputs anywhere in training. Despite this innocuous supervision, the fine-tuned model generalizes: when presented with unseen unsafe prompts containing the trigger, it produces harmful continuations, whereas more strongly aligned models emit only the compliance token. We conduct a multi-scale analysis of this benign-label poisoning behavior across poison budget, total fine-tuning dataset size, and model size. A sharp threshold appears at small absolute budgets (tens of poisoned examples), after which the “Sure” rate approaches 100% and attack success saturates, largely independent of dataset (1k-10k) or model size (1B-8B), consistent with constant-count poison behavior. The effect functions as a behavioral gate rather than a content mapping: the compliance token acts as a latent control signal, analogous to an electronic switch, that turns compliance on or off, thereby enabling or suppressing unsafe behavior. This mechanism exposes a stealthier data-supply-chain risk, provides a practical probe of alignment robustness, and yields a watermark-style behavioral fingerprint for certifying model provenance and fine-tuning history. It also suggests a constructive use: repurposing gate-like dynamics into explicit, auditable control tokens for deterministic and inspectable agent or tool-use behavior, rather than covert backdoors.
