Labels Predicted by AI
Anomaly Detection Method Program Analysis Feature Extraction
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
RISC-V processors are becoming ubiquitous in critical applications, but their susceptibility to microarchitectural side-channel attacks is a serious concern. Detection of microarchitectural attacks in RISC-V is an emerging research topic that is relatively underexplored, compared to x86 and ARM. The first line of work to detect flush+fault-based microarchitectural attacks in RISC-V leverages Machine Learning (ML) models, yet it leaves several practical aspects that need further investigation. To address overlooked issues, we leveraged gem5 and propose a new detection method combining statistical preprocessing and association rule mining having reconfiguration capabilities to generalize the detection method for any microarchitectural attack. The performance comparison with state-of-the-art reveals that the proposed detection method achieves up to 5.15 recall under the cryptographic, computational, and memory-intensive workloads alongside its flexibility to detect new variant of flush+fault attack. Moreover, as the attack detection relies on association rules, their human-interpretable nature provides deep insight to understand microarchitectural behavior during the execution of attack and benign applications.