Labels Predicted by AI
Evaluation Method Prompt Injection
Please note that these labels were automatically added by AI. Therefore, they may not be entirely accurate.
For more details, please see the About the Literature Database page.
Abstract
Despite the growing interest in jailbreak methods as an effective red-teaming tool for building safe and responsible large language models (LLMs), flawed evaluation system designs have led to significant discrepancies in their effectiveness assessments. We conduct a systematic measurement study based on 37 jailbreak studies since 2022, focusing on both the methods and the evaluation systems they employ. We find that existing evaluation systems lack case-specific criteria, resulting in misleading conclusions about their effectiveness and safety implications. This paper advocates a shift to a more nuanced, case-by-case evaluation paradigm. We introduce GuidedBench, a novel benchmark comprising a curated harmful question dataset, detailed case-by-case evaluation guidelines and an evaluation system integrated with these guidelines – GuidedEval. Experiments demonstrate that GuidedBench offers more accurate measurements of jailbreak performance, enabling meaningful comparisons across methods and uncovering new insights overlooked in previous evaluations. GuidedEval reduces inter-evaluator variance by at least 76.03%. Furthermore, we observe that incorporating guidelines can enhance the effectiveness of jailbreak methods themselves, offering new insights into both attack strategies and evaluation paradigms.